Part Number Hot Search : 
10012 AT91S 5SERI 10012 SC1301 TE28F OA333K DTSPU20
Product Description
Full Text Search
 

To Download MIC920BC5 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MIC920
Micrel
MIC920
80MHz Low-Power SC-70 Op Amp Final Information
General Description
The MIC920 is a high-speed operational amplifier with a gain-bandwidth product of 80MHz. The part is unity gain stable. It has a very low 550A supply current, and features the SC-70 package. Supply voltage range is from 2.5V to 9V, allowing the MIC920 to be used in low-voltage circuits or applications requiring large dynamic range. The MIC920 is stable driving any capacitative load and achieves excellent PSRR and CMRR, making it much easier to use than most conventional high-speed devices. Low supply voltage, low power consumption, and small packing make the MIC920 ideal for portable equipment. The ability to drive capacitative loads also makes it possible to drive long coaxial cables.
Features
* * * * * * * 80MHz gain bandwidth product 115MHz -3dB bandwidth 550A supply current SC-70 or SOT-23-5 packages 3000V/s slew rate Drives any capacitive load Unity gain stable
Applications
* * * * * Video Imaging Ultrasound Portable equipment Line drivers
Ordering Information
Part Number MIC920BM5 MIC920BC5 Junction Temp. Range -40C to +85C -40C to +85C Package SOT-23-5* SC-70
* Contact factory for availabilty of SOT-23-5 package.
Pin Configuration
IN-
3
Functional Pinout
V-
2
IN+
1
IN-
V-
2
IN+
1
Part Identification
3
A37
4 5
4 5
OUT
V+
OUT
V+
SOT-23-5 or SC-70
SOT-23-5 or SC-70
Pin Description
Pin Number 1 2 3 4 5 Pin Name IN+ V- IN- OUT V+ Pin Function Noninverting Input Negative Supply (Input) Inverting Input Output: Amplifier Output Positive Supply (Input)
Micrel, Inc. * 1849 Fortune Drive * San Jose, CA 95131 * USA * tel + 1 (408) 944-0800 * fax + 1 (408) 944-0970 * http://www.micrel.com
December 2001
1
MIC920
MIC920
Micrel
Absolute Maximum Ratings (Note 1)
Supply Voltage (VV+ - VV-) ........................................... 20V Differentail Input Voltage (VIN+ - VIN-) .......... 4V, Note 3 Input Common-Mode Range (VIN+, VIN-) .......... VV+ to VV- Lead Temperature (soldering, 5 sec.) ....................... 260C Storage Temperature (TS) ........................................ 150C ESD Rating, Note 4 ................................................... 1.5kV
Operating Ratings (Note 2)
Supply Voltage (VS) ....................................... 2.5V to 9V Junction Temperature (TJ) ......................... -40C to +85C Package Thermal Resistance ............................................. SOT-23-5 .......................................................... 260C/W SC-70-5 ............................................................. 450C/W
Electrical Characteristics (5V)
V+ = +5V, V- = -5V, VCM = 0V, RL = 10M; TJ = 25C, bold values indicate -40C TJ +85C; unless noted. Symbol VOS VOS IB IOS VCM CMRR PSRR AVOL VOUT Parameter Input Offset Voltage VOS Temperature Coefficient Input Bias Current Input Offset Current Input Common-Mode Range Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain CMRR > 72dB -2.5V < VCM < +2.5V 3.5V < VS < 9V RL = 2k, VOUT = 2V RL = 100, VOUT = 1V Maximum Output Voltage Swing positive, RL = 2k negative, RL = 2k positive, RL = 200 negative, RL = 200, Note 5 GBW PM BW SR ISC IS Unity Gain-Bandwidth Product Phase Margin -3dB Bandwidth Slew Rate Short-Circuit Output Current Av = 1, RL = 1k, CL = 1.7pF C=1.7pF, Gain=1, VOUT=5V, peak to peak, positive SR = 1190V/s source sink Supply Current Input Voltage Noise Input Current Noise No Load f = 10kHz f = 10kHz 45 20 CL = 1.7pF +1.5 +3.0 -3.25 75 95 65 85 104 82 85 3.6 -3.6 3.0 -2.5 67 32 100 1350 63 45 0.55 11 0.7 0.80 -1.0 -3.0 Condition Min Typ 0.43 1 0.26 0.04 0.6 0.3 +3.25 Max 5 Units mV V/C A A V dB dB dB dB V V V V MHz MHz V/s mA mA mA nV/Hz pA/Hz
Electrical Characteristics
V+ = +9V, V- = -9V, VCM = 0V, RL = 10M; TJ = 25C, bold values indicate -40C TJ +85C; unless noted Symbol VOS VOS IB IOS VCM CMRR PSRR Parameter Input Offset Voltage Input Offset Voltage Temperature Coefficient Input Bias Current Input Offset Current Input Common-Mode Range Common-Mode Rejection Ratio Power Supply Rejection Ratio CMRR > 75dB -6.5V < VCM < +6.5V 3.5V < VS < 9V -7.25 60 95 91 104 Condition Min Typ 0.3 1 0.23 0.04 0.60 0.3 +7.25 Max 5 Units mV V/C A A V dB dB
MIC920
2
December 2001
MIC920
Symbol AVOL VOUT GBW PM BW SR ISC IS Parameter Large-Signal Voltage Gain Condition RL = 2k, VOUT = 2V RL = 100, VOUT = 1V Maximum Output Voltage Swing positive, RL = 2k negative, RL = 2k Unity Gain-Bandwidth Product Phase Margin -3dB Bandwidth Slew Rate Short-Circuit Output Current AV = 1, RL = 1k, CL = 1.7pF C=1.7pF, Gain=1, VOUT=5V, peak to peak, negative SR = 2500V/s source sink Supply Current Input Voltage Noise Input Current Noise
Note 1. Note 2. Note 3. Note 4. Note 5.
Micrel
Min 75 Typ 84 93 6.5 7.5 -7.5 80 30 115 3000 50 30 65 50 0.55 10 0.8 0.8 -6.2 Max Units dB dB V V MHz MHz V/s mA mA mA nV/Hz pA/Hz
CL = 1.7pF
No Load f = 10kHz f = 10kHz
Exceeding the absolute maximum rating may damage the device. The device is not guaranteed to function outside its operating rating. Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is likely to change). Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. Output swing limited by the maximum output sink capability, refer to the short-circuit current vs. temperature graph in "Typical Characteristics."
December 2001
3
MIC920
MIC920
Micrel
Test Circuits
V+ 10F
V+
50
BNC
0.1F
R2 5k 10F
Input 0.1F 10k 10k 50
BNC
2k
3 5
BNC
Input
4 BNC
R1 5k R7c 2k R7b 200 R7a 100 R6 5k
3
5
0.1F
4 BNC
MIC920
1 2
Output
MIC920
1 2
Output
10k
0.1F
0.1F 50
All resistors 1%
Input 0.1F
R3 200k R4 250
R5 5k V-
10F
All resistors: 1% metal film V-
10F
R2 R2 + R 5 + R4 VOUT = VERROR 1 + + R1 R7
PSRR vs. Frequency
CMRR vs. Frequency
100pF
V+
V+ 10F
10pF R1 20
R2 4k
10F
3
0.1F
5
R3 27k S1 S2
3
5
0.1F
4 BNC
MIC920
1 2
To Dynamic Analyzer
MIC920 VIN 50
1 2
4
300
VOUT FET Probe
0.1F 1k
R5 20
R4 27k
0.1F
CL
10pF V-
10F
10F
V-
Noise Measurement
Closed Loop Frequency Response Measurement
MIC920
4
December 2001
MIC920
Micrel
Typical Characteristics
Offset Voltage vs. Temperature
1.25
SUPPLY CURRENT (mA)
Supply Current vs. Temperature
0.60 V = 9V V = 5V V = 2.5V
SUPPLY CURRENT (mA)
Supply Current vs. Supply Voltage
0.62 0.60 0.58 0.56 0.54 0.52 0.50 0.48 0.46 0.44 0.42 0.40 2.5
OFFSET VOLTAGE (mV)
1.2 1.15 1.1 1.05 1 0.95
V = 2.5V
0.55 0.50 0.45 0.40 0.35
V = 5V V = 9V
+85C +25C
-40C
0.9 -40 -20 0 20 40 60 80 100 TEMPERATURE (C)
0.30 -40 -20 0 20 40 60 80 100 TEMPERATURE (C)
3.8 5.1 6.4 7.7 SUPPLY VOLTAGE (V)
9
Offset Voltage vs. Common-Mode Voltage
2.2 2 V = 2.5V 1.8 1.6 -40C 1.4 1.2 +25C 1 0.8 0.6 0.4 0.2 +85C 0 -900 -540 -180 180 540 900 COMMON-MODE VOLTAGE (V) 2.2 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 OFFSET VOLTAGE (mV)
OFFSET VOLTAGE (mV)
Offset Voltage vs. Common-Mode Voltage
OFFSET VOLTAGE (mV)
Offset Voltage vs. Common-Mode Voltage
2.2 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 V = 9V
V = 5V
-40C +25C
-40C +25C +85C
1.48 2.96 4.44 5.92 -64 -72
-40C
+85C
0.68 1.36 2.04 2.72 -2.04 -1.36 -0.68 0 3.40
-3.40 -2.72
-7.40 -5.92
-4.44 -2.96
COMMON-MODE VOLTAGE (V)
COMMON-MODE VOLTAGE (V)
Short-Circuit Current vs. Supply Voltage (Sourcing)
84 80 76 72 68 64 60 56 52 48 44 40 2.0
SHORT-CIRCUIT CURRENT (mA)
SHORT-CIRCUIT CURRENT (mA)
Short-Circuit Current vs. Supply Voltage (Sinking)
17 20 23 26 29 32 35 38 25C 85C 41 44 47 -40C 50 2.0 3.4 4.8 6.2 7.6 9.0 SUPPLY VOLTAGE (V)
5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0
OUTPUT VOLTAGE (V)
Output Voltage vs. Output Current (Sourcing)
V = 5V 85C 25C -40C
-40C 25C 85C
-8 -16
-24 -32
-40 -48 -56
-1.48 0
3.4 4.8 6.2 7.6 SUPPLY VOLTAGE (V)
9.0
OUTPUT CURRENT (mA)
Output Voltage vs. Output Current (Sinking)
0.5 85C 0 -0.5 -1.0 -1.5 -2.0 25C -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 V = 5V
Output Voltage vs. Output Current (Sourcing)
11 10 9 8 7 6 5 4 3 2 1 0 V = 9V
OUTOUT VOLTAGE (V) OUTOUT VOLTAGE (V)
Output Voltage vs. Output Current (Sinking)
1 25C 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10
50 45
V = 9V 85C
OUTPUT VOLTAGE (V)
25C -40C
-40C
85C
-16 -24 -32 -40 -48 -56 -64 -72 -80 0 -8
45.0 40.5
36.0 31.5 27.0
22.5 18.0
13.5 9.0 4.5
0
40 35 30
25 20 15 10
OUTPUT CURRENT (mA)
OUTPUT CURRENT (mA)
OUTPUT CURRENT (mA)
December 2001
5
5 0
-80
0
7.40
MIC920
MIC920
Micrel
Bias Current vs. Temperature
0.35 0.30 BIAS CURRENT (A) 0.25 0.20 0.15 0.10 0.05 0.00 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) 9V 5V
Closed-Loop Frequency Response
25 20 15 10
GAIN (dB)
Closed-Loop Frequency Response
25 20 15
GAIN (dB)
5 0 -5 -10
10 5 0 -5
5.0V
9.0V
9.0V
5.0V
2.5V -15 Av = -1 -20 R+ = R = 475 I -25 1E+6 10E+6 100E+6 200E+6 1M 100M 10M FREQUENCY (Hz)
2.5V -10 -15 Av = 2 R = RI = 475 F -20 -25 1E+6 10E+6 100E+6 200E+6 1M 100M 10M FREQUENCY (Hz)
Closed-Loop Gain vs. Frequency
50 CLOSED-LOOP GAIN (dB)
CLOSED-LOOP GAIN (dB)
Closed-Loop Gain vs. Frequency
50
OPEN-LOOP GAIN (dB)
Open-Loop Gain vs. Frequency
50 40 30 20 10 0 -10 -20
1000pF 471pF 200pF
40 30 20 10 0 -10
400pF 200pF 100pF 1000pF 0
40 30 20 10 0 -10
1.7pF 200pF 100pF 1000pF
V = 5V
121pF 50pF 1.7pF
800pF -20 600pF -30 -40 V = 5V Av = 1 -50 1E+6 10E+6 100E+6 200E+6 100M 1M 10M FREQUENCY (Hz)
800pF -20 600pF 400pF -30 V = 9V -40 Av = 1 -50 1E+6 1E+7 1E+8 2E+8 1M 10M 100M FREQUENCY (Hz)
-30 -40 -50 1M 1x106
10M 100M 10x106 100x106 200x106 FREQUENCY (Hz)
Open-Loop Gain vs. Frequency
GAIN BANDWIDTH (MHz)
Gain Bandwidth and Phase Margin vs. Supply Voltage
85 80 75 70 31 65 60 55 29 27 Phase Margin 37 GAIN BANDWIDTH (MHz) 35 PHASE MARGIN () 33
Gain Bandwidth and Phase Margin vs. Load
70 60 50 40 30 20 10 0 0 30 Gain Bandwidth 25 Phase Margin 35 V = 5V 50 45 40 PHASE MARGIN ()
50 40
OPEN-LOOP GAIN (dB)
V = 9V
30 20 10 0 -10 -20 -30 -40 -50 1M 1x106
1000pF 471pF 200pF
121pF 50pF 1.7pF
10M 100M 10x106 100x106 200x106 FREQUENCY (Hz)
Gain Bandwidth 50 25 0 1 2 3 4 5 6 7 8 9 10 SUPPLY VOLTAGE (V)
20 200 400 600 800 1000 CAPACITIVE LOAD (pF)
Gain Bandwidth and Phase Margin vs. Load
90
Open-Loop Frequency Response
55
GAIN BANDWIDTH (dB)
Open-Loop Frequency Response
225
GAIN BANDWIDTH (dB)
100 80 60 40 20 0 -20 -40 -60 -80 -100 100k
Gain
GAIN BANDWIDTH (MHz)
80 70 60 50 40 30 20 10 0 0 Gain Bandwidth
V = 9V
100
PHASE MARGIN ()
50 45 Phase Margin 40 35 30 25
PHASE MARGIN ()
Phase No Load Gain
Phase No Load
20 0 -20 -40 -60 -80 -100 100k
45 0 -45 -90 -135
90 45 0 -45 -90 -135
100
100
20 200 400 600 800 1000 CAPACITIVE LOAD (pF)
-180 -225 1M 10M 100M CAPACITIVE LOAD (pF)
-180 -225 1M 10M 100M CAPACITIVE LOAD (pF)
MIC920
6
December 2001
PHASE MARGIN ()
80 60 40
V = 5V
100
180 135 90
V = 9V
100
225 180 135
MIC920
Micrel
Positive PSRR vs. Frequency
120 100 PSRR (dB)
PSRR (dB)
Negative PSRR vs. Frequency
120 100
PSRR (dB)
Positive PSRR vs. Frequency
120 100 80 60 40 20 0 0.1 1 10 100 1k FREQUENCY (kHz) V = 9V
V = 5V
V = 5V
80 60 40 20 0 0.1 1 10 100 1k FREQUENCY (kHz)
80 60 40 20
10k
0 0.1
1
10 100 1k FREQUENCY (kHz)
10k
10k
Negative PSRR vs. Frequency
120 100
CMRR (dB)
Common-Mode Rejection Ratio
100 90 80 70 60 50 40 30 20 10 0 V = 5V 100 90 80
CMRR (dB)
Common-Mode Rejection Ratio
V = 9V
V = 9V
PSRR (dB)
80 60 40 20 0 0.1 1 10 100 1k FREQUENCY (kHz)
70 60 50 40 30 20 10 0
10k
100x100 1x103 100 1k
10x103 100x103 1x106 10k 100k 1M
10x106 10M
100x100 1x103 100 1k
FREQUENCY (Hz)
10x103 100x103 1x106 10k 100k 1M FREQUENCY (Hz)
10x106 10M
Positive Slew Rate
1400 1200 V = 5V SLEW RATE (V/s) 1200 1000
Negative Slew Rate
V = 5V SLEW RATE (V/s) 3500 3000 2500 2000 1500 1000 500 200 400 600 800 1000 LOAD CAPACITANCE (pF) 0 0
Positive Slew Rate
V = 9V
SLEW RATE (V/s)
1000 800 600 400 200 0 0 200 400 600 800 1000 LOAD CAPACITANCE (pF)
800 600 400 200 0 0
200 400 600 800 1000 LOAD CAPACITANCE (pF)
Negative Slew Rate
3000 2500 NOISE VOLTAGE (nV/Hz1/2) V = 9V 70 60 50 40 30 20 10 0 10
Voltage Noise Density vs. Frequency
2.5 NOISE CURRENT (pA/Hz1/2) 2.0 1.5 1.0 0.5 0 10
Current Noise Density vs. Frequency
SLEW RATE (V/s)
2000 1500 1000 500 0 0 200 400 600 800 1000 LOAD CAPACITANCE (pF)
100 1000 10000 100000 FREQUENCY (Hz)
100 1000 10000 100000 FREQUENCY (Hz)
December 2001
7
MIC920
MIC920
Micrel
Functional Characteristics
Small Signal Response
Small Signal Response
INPUT (50mV/div)
OUTPUT (50mV/div)
TIME (100ns/div)
OUTPUT (50mV/div)
INPUT (50mV/div)
VCC = 9.0V CL = 1.7F Av = 1.0V/V
VCC = 5.0V CL = 1.7F Av = 1.0V/V
TIME (100ns/div)
Small Signal Response
Small Signal Response
INPUT (50mV/div)
VCC = 9.0V CL = 100pF Av = +1
INPUT (50mV/div)
VCC = 5.0V CL = 100pF Av = +1V/V
OUTPUT (50mV/div)
TIME (100ns/div)
OUTPUT (50mV/div)
TIME (100ns/div)
Small Signal Response
Small Signal Response
INPUT (50mV/div)
INPUT (50mV/div)
VCC = 9.0V CL = 1000pF Av = +1V/V
VCC = 5.0V CL = 1000pF Av = +1V/V
OUTPUT (50mV/div)
OUTPUT (50mV/div)
TIME (100ns/div)
TIME (100ns/div)
MIC920
8
December 2001
MIC920
Micrel
Large Signal Response
V = 5V CL = 1.7pF Av = 1 Positive SR = 1350V/sec Negative SR = 1190V/sec
Large Signal Response
OUTPUT (2V/div)
OUTPUT (2V/div)
V = 9V CL = 1.7pF Av = 1 Positive SR = 3000V/sec Negative SR = 2500V/sec TIME (10ns/div) TIME (10ns/div)
Large Signal Reponse
V = 5V CL = 100pF Av = 1 Positive SR = 373V/sec Negative SR = 290V/sec
Large Signal Response
OUTPUT (2V/div)
OUTPUT (2V/div)
V = 9V CL = 100pF Av = 1 Positive SR = 672V/sec Negative SR = 424V/sec TIME (50ns/div) TIME (50ns/div)
Large Signal Response
V = 5V CL = 1000pF Av = 1 Positive SR = 75V/sec Negative SR = 41V/sec
Large Signal Response
OUTPUT (2V/div)
Output (2V/div)
V = 9V CL = 1000pF Av = 1 Positive SR = 97V/sec Negative SR = 60V/sec TIME (100ns/div) TIME (100ns/div)
December 2001
9
MIC920
MIC920
Micrel
Power Supply Bypassing Regular supply bypassing techniques are recommended. A 10F capacitor in parallel with a 0.1F capacitor on both the positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to the op amp as possible and all capacitors should be low ESL (equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal. Thermal Considerations The SC70-5 package and the SOT-23-5 package, like all small packages, have a high thermal resistance. It is important to ensure the IC does not exceed the maximum operating junction (die) temperature of 85C. The part can be operated up to the absolute maximum temperature rating of 125C, but between 85C and 125C performance will degrade, in particular CMRR will reduce. An MIC920 with no load, dissipates power equal to the quiescent supply current x supply voltage PD(no load) = VV + - VV - IS When a load is added, the additional power is dissipated in the output stage of the op amp. The power dissipated in the device is a function of supply voltage, output voltage and output current. PD(output stage) = VV + - VOUT IOUT
Total Power Dissipation = PD(no load) + PD(output stage)
Applications Information
The MIC920 is a high-speed, voltage-feedback operational amplifier featuring very low supply current and excellent stability. This device is unity gain stable, capable of driving high capacitance loads. Driving High Capacitance The MIC920 is stable when driving high capacitance, making it ideal for driving long coaxial cables or other high-capacitance loads. Most high-speed op amps are only able to drive limited capacitance. Note: increasing load capacitance does reduce the speed of the device. In applications where the load capacitance reduces the speed of the op amp to an unacceptable level, the effect of the load capacitance can be reduced by adding a small resistor (<100) in series with the output. Feedback Resistor Selection Conventional op amp gain configurations and resistor selection apply, the MIC920 is NOT a current feedback device. Also, for minimum peaking, the feedback resistor should have low parasitic capacitance, usually 470 is ideal. To use the part as a follower, the output should be connected to input via a short wire. Layout Considerations All high speed devices require careful PCB layout. The following guidelines should be observed: Capacitance, particularly on the two inputs pins will degrade performance; avoid large copper traces to the inputs. Keep the output signal away from the inputs and use a ground plane. It is important to ensure adequate supply bypassing capacitors are located close to the device.
(
)
(
)
Ensure the total power dissipated in the device is no greater than the thermal capacity of the package. The SC70-5 package has a thermal resistance of 450C/W.
Max. AllowablePowerDissipation =
TJ(max) - TA(max) 450C / W
MIC920
10
December 2001
MIC920
Micrel
Package Information
1.90 (0.075) REF 0.95 (0.037) REF
1.75 (0.069) 1.50 (0.059)
3.00 (0.118) 2.60 (0.102)
DIMENSIONS: MM (INCH) 3.02 (0.119) 2.80 (0.110) 1.30 (0.051) 0.90 (0.035) 10 0 0.15 (0.006) 0.00 (0.000) 0.20 (0.008) 0.09 (0.004)
0.50 (0.020) 0.35 (0.014)
0.60 (0.024) 0.10 (0.004)
SOT-23-5 (M5)
0.65 (0.0256) BSC
1.35 (0.053) 2.40 (0.094) 1.15 (0.045) 1.80 (0.071) 2.20 (0.087) 1.80 (0.071) DIMENSIONS: MM (INCH) 1.00 (0.039) 1.10 (0.043) 0.80 (0.032) 0.80 (0.032) 0.18 (0.007) 0.10 (0.004)
0.30 (0.012) 0.15 (0.006)
0.10 (0.004) 0.00 (0.000)
0.30 (0.012) 0.10 (0.004)
SC-70 (C5)
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131
TEL
USA
+ 1 (408) 944-0800
FAX
+ 1 (408) 944-0970
WEB
http://www.micrel.com
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc. (c) 2001 Micrel Incorporated
December 2001
11
MIC920


▲Up To Search▲   

 
Price & Availability of MIC920BC5

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X